AnalysisofDirectActionFuzzyPIDControllerStructures
GeorgeK.I.Mann,Bao-GangHu,Member,IEEE,andRaymondG.Gosine,Member,IEEE
Abstract—ThemajorityoftheresearchworkonfuzzyPIDcontrollersfocusesontheconventionaltwo-inputPIorPDtypecontrollerproposedbyMamdani[1].However,fuzzyPIDcontrollerdesignisstillacomplextaskduetotheinvolvementofalargenumberofparametersindefiningthefuzzyrulebase.ThispaperinvestigatesdifferentfuzzyPIDcontrollerstructures,includingtheMamdani-typecontroller.Byexpressingthefuzzyrulesindifferentforms,eachPIDstructureisdistinctlyidentified.Forpurposeofanalysis,alinear-likefuzzycontrollerisdefined.Asimpleanalyticalprocedureisdevelopedtodeducetheclosedformsolutionforathree-inputfuzzyinference.ThissolutionisusedtoidentifythefuzzyPIDactionofeachstructuretypeinthedissociatedform.Thesolutionforsingle-input–single-outputnonlinearfuzzyinferencesillustratestheeffectofnonlinearitytuning.ThedesignofafuzzyPIDcontrolleristhentreatedasatwo-leveltuningproblem.ThefirstleveltunesthenonlinearPIDgainsandthesecondleveltunesthelineargains,includingscalefactorsoffuzzyvariables.Byassigningaminimumnumberofrulestoeachtype,thelinearandnonlineargainsarededucedandexplicitlypresented.ThetuningcharacteristicsofdifferentfuzzyPIDstructuresareevaluatedwithrespecttotheirfunctionalbehaviors.Theruledecoupledandone-inputrulestructuresproposedinthispaperprovidegreaterflexibilityandbetterfunctionalpropertiesthantheconventionalfuzzyPIDstructures.IndexTerms—Apparentlineargains,apparentnonlineargains,fuzzycontrol,linear-likefuzzy,PIDstructures,two-leveltuning.
I.INTRODUCTION
VERTHEpasttwodecades,thefieldoffuzzycon-trollerapplicationshasbroadenedtoincludemanyin-dustrialcontrolapplications,andsignificantresearchworkhassupportedthedevelopmentoffuzzycontrollers.In1974,Mamdani[1]pioneeredtheinvestigationofthefeasibilityofusingcompositionalruleofinferencethathasbeenproposedbyZadeh[2],forcontrollingadynamicplant.Ayearlater,MamdaniandAssilian[3]developedthefirstfuzzylogiccontroller(FLC),anditsuccessfullyimplementedtocontrolalaboratorysteamengineplant.Inastrictsense,thefirstfuzzycontrollershownin[3]wasequivalenttotwo-inputfuzzyPI(orPI-like)controllerswhereerroranderrorchange,wereusedastheinputsfortheinference.Mamdani’spioneeringworkalsointroducedthemostcommonandrobustfuzzy
ManuscriptreceivedFebruary14,1998;revisedNovember20,1998.ThisworkwassupportedbytheNaturalSciencesandEngineeringResearchCouncilofCanada,theCanadianSpaceAgency,andthePerto-CanadaResources.ThispaperwasrecommendedbyAssociateEditorA.Kandel.G.K.I.MannandR.G.GosinearewiththeC-COREandFacultyofEngineeringandAppliedScience,MemorialUniversityofNewfoundland,St.John’s,NF,Canada(e-mail:mann@engr.mun.caandrgosine@engr.mun.ca).B.-G.HuiswiththeNationalLaboratoryofPatternRecognition,InstituteofAutomation,Beijing100080,China(e-mail:hubg@prlsun3.ia.ac.cn).PublisherItemIdentifierS1083-4419(99)03532-3.
O
reasoningmethod,calledZadeh–Mamdanimin–maxgravityreasoning.Also,asignificantnumberofin-depththeoreticalandanalyticalinvestigationsrelatedtothisstructurehavebeenreportedin[4]–[8].TakagiandSugeno[9]introducedadifferentlinguisticdescriptionoftheoutputfuzzysets,andanumericaloptimizationapproachtodesignfuzzycontrollerstructures.
ThereareseveraltypesofcontrolsystemsthatuseFLCasanessentialsystemcomponent.ThemajorityofapplicationsduringthepasttwodecadesbelongtotheclassoffuzzyPIDcontrollers.Thesefuzzycontrollerscanbefurtherclassifiedintothreetypes:thedirectaction(DA)type,thegainsched-uling(GS)typeandacombinationofDAandGStypes.ThemajorityoffuzzyPIDapplicationsbelongtotheDAtype;herethefuzzyPIDcontrollerisplacedwithinthefeedbackcontrolloop,andcomputesthePIDactionsthroughfuzzyinference.InGStypecontrollers,fuzzyinferenceisusedtocomputetheindividualPIDgainsandtheinferenceiseithererrordrivenself-tuning[10]orperformance-basedsupervisorytuning[11].InadditiontothecommonMamdani-typePIstructure,severalotherstructuresusingone-orthree-inputcontrollershavebeenreported.Forcomparison,afewselectederrordrivenfuzzyPIDapplicationsarelistedinTableI.Itisclearfromthisliteraturereviewthatthemajorityoftheseapplicationsbelongtotheclassoftwo-inputfuzzyPIDtypestructures.ThemajorityofotherrelatedfuzzyPIDreferences,whichhavenotbeenincludedinthistable,fallintothecategoryoftwo-inputMamdani-typePIDstructures.Inourrecentwork[38],aone-inputfuzzyPIDstructurewasusedtocontrolseveralfirst-andsecond-orderplantmodels.Theone-inputFLCwithfewerruleshasnotbeencommonlyusedforsimultaneouslyderivingthethreefuzzyPIDactions.Basedonthisliteraturereview,wecanarguethatdifferentfuzzyPIDstructuresarepossibleinthecontextofknowledgerepresentation,andthattheyshouldbeevaluatedwithrespecttotheirfunctionalbehaviors.Therefore,inthispaperweintendtodeduceandevaluatedifferentfuzzyPIDstructures,includingthecommonlyavailablefuzzyPIDcontrollers.SincetheDAtypefuzzyPIDisthemostcommonlyused,ourstudyisrestrictedtothosecontrollersonly.
ThelinearPIDcontrollersareeasytoimplement,andsufficienttuningrulesareavailabletocoverwiderrangeofprocessspecifications.Moreover,theavailablePIDtuningheuristicsareeasytounderstandandimplementforpracticalcontrolproblems.Fuzzycontrollersgenerallyprovidethenonlineartransferelementsfornonlinearcontrol[39].Thesystemofif-thenrulesinthefuzzyknowledgebasesystem
1083–4419/99$10.00©1999IEEE
372IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
TABLEI
DIFFERENTFUZZYPIDSTRUCTURESINTHELITERATURE,e-ERROR,1e-CHANGEOFERROR,12e-RATEOFCHANGEOFERROR,y-PLANTRESPONSE,1y-CHANGEOFPLANTRESPONSE,+GSTYPE,3COMBINEDDAANDGSTYPES.OTHERSDATYPE
istransformedintothisnonlineartransferelements.AsaresulttheFLChasbeensuccessfullyimplementedinthepasttoformanylinearandnonlinearprocesses[9],[11],[18],[36].ThenaturalrepresentationofcontrolknowledgethroughfuzzyparadigmsallowsthecontrolactiontobeeitherlinearornonlinearandprovidesimprovedcontrolincomparisonwithaconventionalPIDcontrollerusinglinearcontrolpolicy.Thefinaltuningoffuzzycontrollers,however,isstilladifficulttask.Manyoff-linetechniqueshavebeendevelopedinthepastfordecidingthenonlineartransferelementsofthefuzzycontrollers.Asanexample,cell-to-cellmapping[30],trainingalgorithmsusinginput/outputdata[40],andgeneticsearchalgorithms[38],[41]arecapableofgeneratingtheoptimumornearoptimumsolutionstothefuzzysystemsinahighdimensionalspace,butatthecostofextensivecomputersimulationsandtime.Althoughthegeneticalgorithmsarequitepowerfulinhandlingalargenumberofvariables,thenumberofiterationcyclesandtheaccuracydefinitions(orresolution)allowsonetoreachonlyanearoptimumratherthanglobaloptimum.Duetothecomplexityofthenonlinearcontrolsurfacethatisgeneratedbyconventionaltwo-inputfuzzycontrollers,identifyingandsolvingalargenumberoftuningparametersbyananalyticalmeansisextremelydifficult.InthispaperweproposesimplefuzzyPIDcontrollerstructuresforreducingthedimensionalityindesigns.Functionalbehaviorsofthesefuzzycontrollersareevaluatedtoshowthemaindrawbacksoftheconventionaltwo-inputfuzzyPIDcontrollers.
Inthispaperwedescribethreecontributions.First,newfuzzyPIDstructuresareidentifiedinadditiontocommonly
Fig.1.CascadetypefeedbackPIDcontrolledsystem.
availableconventionalfuzzyPIDstructures.Theseincludeaone-input–three-outputsfuzzycontrollerusingerrormappingforgeneratingindividualfuzzyPIDactions.Second,anewanalyticalprocedureispresentedforthegeneralthree-inputLLFLCinferencebasedonmin–maxgravityreasoning.Twoandone-inputsimplificationsareincludedtocoveraspectrumoffuzzyPIDstructures.Third,theapparentnonlinearandapparentlinearPIDgainanalysisispresentedforidentifyingthetwo-leveltuningoffuzzyPIDstructures.Thereforetheworkinthispaperisarrangedasfollows.
1)FuzzyPIDelementsareproposedandthensixdifferentfuzzyPIDstructures,includingcommonlyavailablestructures,areconstructed.
2)ClosedformsolutionsfortheoutputsoffuzzyPIDelementsarededucedbasedonalinear-likefuzzylogiccontroller(LLFLC).AlsotheoutputofaSISOnonlinearlikefuzzycontrollerwiththreerulesisdeduced.
3)Usingtheclosed-formexpressions,apparentnonlinearandapparentlinearfuzzyPIDgainsarededucedwhileconsideringtwo-levelsoftuning.
4)Thestructuresareevaluatedintermsoftwo-levelsoftuning.Nonlineartuningisevaluatedwithrespecttothefunctionalbehaviorsofstructures.
II.FUZZYPIDSTRUCTURALELEMENTS
ThelinearPIDcontrollerscanbeclassifiedintodifferentcategorieswithrespecttothepositioningofthethreetermsintheclosed-loopcontrolsystem.Incomputercontrolledsingle-inputsingle-output(SISO)plantsystems,thecascade-formPIDcontrolleriscommonlyused.ThereforeinthisstudywerestrictourclassificationtocascadetypePIDcontrollersasshowninFig.1.Otherforms[35]–[37]canbeobtainedbyextendingthefundamentalprincipleweproposeinthisstudy.ConsideringalinearPIDcontrollerinFig.1,thecontrollersignalatanygiventimeinstance
(1)
and
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURESFig.2.FuzzyPIDstructuralelements.
aredefinedas:error,errorchange
,
with
beingthefeedbackresponsesignal,andthedesiredresponseorreferenceinputatthe
fromallthecontrolvariables.Thescalefactors(
,,and,arethenormalizederrorvari-ablescorrespondingtotheerrorterms
,and)then(output).”Inthecaseoftwo-inputconfigurations,onlyPDandPIcontrollerelementsareconsidered.AsubscriptwiththenormalizedoutputvariableisusedforidentifyingthecorrespondingactioninafuzzyPIDcontroller.
InderivingapracticalfuzzyPIDstructurethefollowingremarksaremade.
373
Remark1:Itisdifficulttoformulatecontrolruleswiththeinputvariablesum-of-error
)is
consideredthenecessaryinputforderivinganyPIDstructure.Theerrorinputprovidesthenonlinearproportionalactionsthroughthefuzzyinference.Foranysystemtodrivefromadeadstate,proportionalcontrolisthebasicactionrequiredfromthethree-termPIDcontroller.Forexample,incaseofasteadyoffsetinthesystemresponse,orincaseofatime-delayprocess,themagnitudeofallerrorderivativesbecomesnegligible.Inthosecircumstancesthesteadyerroristheonlyavailableinformationthatcanprovideafinitecontrolactiontodiverttheoutputfromadeadsituation.
III.FUZZYPIDSTRUCTURES
BytakingdifferentcombinationsofthefuzzyPIDstructuralelementsdefinedintheprevioussection,wecannowconstructfuzzycontrollerstorepresentPIDactionsinanonlinearform.BasedonRemarks1and2,someofthestructuralelementscanbeconsideredtobe“bad”andcanbeeliminatedinbuildingafuzzyPIDstructure.Thereforeinthissystematicinvestigationweevaluatesixtypesofcontrollersandcomparetheirperformance.In1975,Zadehpublishedathree-partpaper[42]describingthefundamentalsoffuzzylogicprinciplesforusingindecision-makingsystems.Zadehhasincludedmanydefinitionsandconceptstogeneralizethebroaderperspectivesofhumanisticsystems.TheFLCsystemsusessomeofthoseconceptsfordescribingtheknowledgebase.
Definethelinguisticvariablesthatcorrespondtothein-putscaledvariables,
,,and,respectively.Theindices,and
,where
isthefinal
controlleroutput.Assignlinguisticvariablesforthecontroller
outputas
,orforincrementalsignal
.Thevalue
isusedto
denotethenonlinearmappingbetweeninputsandoutput.TypeI—Three-InputFLCStructurewithCoupledRules:Itispracticallydifficulttoassignlinguisticvaluesortermsfortheinput
,and,correspondingtoanincrementaltypefuzzyPID
374IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
Fig.3.Three-inputfuzzyPID(TypeI).
Fig.4.Three-inputfuzzyPID(TypeII).
controller.Usingtherulebasenotationof[11],Type-IfuzzyPIDstructurecanbeexpressedby
ELSE
IS
AND
IS
IS
THENIS
ELSE
)astheuseful
PIDelementsforfuzzycontrol.TheyarecorrespondingtotheincrementalPIorabsolutePDsignals.Theothertwo-inputcontrolelementsshownintheFig.2areeliminatedaccordingtotheRemarks1and2.BycombiningbothPIandPDactionsasshowninFig.5,atwo-inputfuzzyPIDcontrollercanbeformed.TherulebasestructureisidenticaltoMamdani-typefuzzyPIcontroller.Thebasicrulebaseofthisconventionaltypeisgivenby
ELSE
IF
ISIS
THEN
andand
and
IS
IS
THEN
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURESFig.6.Two-inputfuzzyPID(TypeIV).
Fig.7.One-inputfuzzyPID(TypeV).
fuzzyproportionalaction.Therulebaseoftheone-inputfuzzyproportionalcontrolelementisgivenby
ELSEIF
IS
(12)
Similartothepreviouscase,wecaninferfromone-input
elements
andbyassumingtheanalogybetweentheproportionalandderivativeactionsas,
IS
ELSEIFIS
THEN
ELSE
IS
375
376IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
thegeneralsolutionisexpressedwithonlytwodifferentnonlinearterms.Inadditiontotheabovewehaveusedthestandardcenterofarea(COA)defuzzificationmethodratherthancenterofheights(COH)[39]orcenteraveragedefuzzification[40]thatwasusedin[5],[6],and[35].TheCOHmethodisaconvenientwaytoobtainoutputsolutionwithleastnumberofexpressions.However,theCOHmethodignorestheeffectoffuzziness[11]associatedwiththeoutputlinguisticvariablesandisequivalenttotakingfuzzysingletonfunctions.Asanexample,theCOHmethodignoresthewidthofthesupportsetorthepartitioningoftheoutputmembershipfunctionsduringthedefuzzifications.AsaresulttheCOHproduceslessnonlinearitythantheCOAmethod,particularlyforone-inputfuzzyinferences.OntheotherhandCOHisbetterforobtainingpiece-wiselinearity.Forhighdegreeofnonlinearity,itrequiresalargenumberofrules.Thisparticularcharacteristicshasbeenexploitedtoobtainthenonlinearfunctionapproximations[40],butattheexpenseoflargernumberofrules.HowevertheCOGmethodisdifficulttoanalyzeforahighlynonlinearrulebases.Thenonlinearlikeanalysisweperforminthelatterpartofthispaper(SectionIV-D)clearlydemonstratesthebenefitsofCOGmethod.A.Definition—Linear-LikeFuzzyLogicController
Letthethreeerrorinputsinanyorderbedefinedas
1,1]asshownin
Fig.9(a).Thetotalnumbersoflinguisticvariablesused
for
,and,where
rules,therulebaseisdefinedas
ELSE
IS
AND
THEN
IS
and
round
round
round
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURESTABLEII
NONLINEARTERMFORTHETHREE-INPUTLLFLCOUTPUT
Step3:Definetheincrementalinputvectors.NormalizedincrementalinputvectorandNormalizedabsoluteincrementalinputvectorarerespectivelygivenby
(26)
If
377
modified
Step7:ComputetheLLFLCoutput
)andanonlinearcontrolleroutput().The
linearcontrollerisdefinedastheequivalentlinearcontroller(ELC)oftheLLFLCsystem
and
.From(15),.Thetriangular
membershipfunctiondefinedforthesinglelinguisticvariablewillnowhaveaninfinitelongsupportsetasshowninFig.10.Thefuzzymembershipfunctionwillbeahorizontallinewithaunitgradeofmembershipheight.Themodalpositionofthe
singlefuzzysetbecomeswith.Thusforanyinput
conditionsthe
whichimplies
linearrulesandisobtainedby
simplifyingthethree-inputrulebasein(17)asELSEIF
IS
THEN
IS
.Sincewenowhaveonlytwo
inputvariables,theeightcasesinTableIIreducetofourcases
and
iseliminated.Foratwo-inputfuzzycontroller,Steps1–7areusedwhileequatingoneoftheinputvariablestozero.
Takingthespecialcasefor
when378IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
TABLEIII
NONLINEARTERMFORTHETWO-INPUTLLFLCOUTPUT
correspondingnonlinearterm(
,where
(32)
Similartothethree-inputcase,thegeneraloutputexpressionforthetwo-inputLLFLCoutputcanbeobtainedasthesum
oflinear(
)andnonlinear()controlleroutputsISTHENIS
forany(
isgivenby
and
)controlleroutputs,andis
givenby
,
nowhaveonlytwovalues,0and1,wefirstconsider
thepositiveincrementalinputsmeasuredfromthe0indexpositions.Foranygiveninputerrorvector
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURESThe(38)isrewritteninthedissociatedformas
where
379
”isusedtoidentify
thenonlinearlikecontroller.Thesimplestthreelinearrules,R1–R3,foraone-inputPIDcontrollerelementcanbethenrepresentedby
R1:IfisNBthenisNBR2:IfisZEthenisZER3:If
isPBthen
isPB
1,1].In
ordertoreducethecomplexityofthesolution,thefollowingconstraintisimposedforthemembershipvariables.Rangefor
380IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
Fig.13.Fuzzyoutputs(shadedareas)correspondingtodifferentinputcon-
ditions.
CaseII—Overlapping:AND
a)
OR
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURES381
ANGTERMS
OF
TABLEV
DIFFERENTFUZZYPIDSTRUCTURES
questionforinnerloopcontrollerswheretheavailabilityofsuchcontrollerexperienceisminimal[11].Inmanycases,thenonlineartuningiscarriedoutarbitrarilybychangingrulesandmembershipfunctionparameters,andobservingtheeffectincomputersimulations.Agenericanalysisisextremelydifficult,particularlyforcoupledthree-inputortwo-inputrulebases.AsweareprimarilyinterestedincomparingfuzzyPIDstructures,asimplestLLFLCrulebasestructureisassumedforderivingANGtermsofcontrollerstructuretypesI–V.TheANGtermsoftypeVIcontrollerareshownwithrespecttothenonlinearlikefuzzycontroller.
ThenonlinearPIDgains(ANGterms)relatedtonormalizedPIDactionsaredefinedas
and
(46)
where
382IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
TheequivalentformwithANGtermsisthenarrangedas
in(42)–(),theANGtermsthatcorrespondtothearrangementin(53)arethusobtained.Forsmallsamplingtimeintervalstheequivalentnonlinearderivativegainhasbeenfurthersimplifiedwhileusingtherelation
.
6)ANGforTypeVI:SincetypeVstructureisaspecialcaseoftypeVI,withthesimplestLLFLCrulebasesbothtypesareidentical.Apracticalhighperformancefuzzycontrollerrequirestheknowledgebasetohaveanonlinear-likestructure.However,forthenormalizedproportionalcontrolleroutputtobemonotonicwithrespecttoerror,therulesmustbearrangedinthelinearform,asin(34).Insuchcircumstances,themembershipfunctionsareplacednonuniformlytoobtainthenonlineartuning.Inordertoillustratethis,thesolutionofthesimplestnonlinearlikefuzzycontrollershownby(45)is
used.Let
,bethevectorcontainingnonlineartuningparametersoftheone-inputfuzzyknowledgebase.Thenwecandefinethreeseparateproportionalactionswiththreedifferent
(56)
TheexpressionoftheANGtermsarrangementfor(56)isidenticalto(53).Substituting(55)into(56),theANGtermsthatcorrespondtothearrangementin(53)arethusobtained.SimilartothetypeV,thesmallsamplingtimeisassumedforobtainingthederivativeANGterm.B.ApparentLinearGains
Theoveralltuningoffuzzycontrollersisgenerallyachievedbythesecond-leveltuning,wherescalefactorsandothergainsareadjustedtoobtainthedesiredoroptimumresponse.Inpracticethisisatrialanderrorprocedure.Sometuningrulesfortheselineargainsarereportedin[44]forthetwo-inputPIstructure.Theuseofgeneticalgorithmstoselectthesegainsisdescribedin[38]and[41].Inthisanalysis,apparentlinearPIDgainsaredefinedforthefuzzyPIDstructures.ThebehaviorofthosegainsisexpectedtobelinearlyequivalenttoconventionalPIDgains.Inorderfortheapparentgainstobefunctional,withoutlossofgenerality,weimposethefollowingconstraints.
Constraint1:Assumetheuniverseofdiscourseofallin-putvariablesareuniformlypartitionedandthemembershipfunctionsareplacedwith50%overlapsupportsets.Therulesaredefinedinthelinearform.Nonlinearityisallowedbychangingpositionsofoutputmembershipfunctions.Letthe
uniforminputmembershipspacingbegivenby
,and,respectivelyfortheinputs.
Constraint2:Thedefuzzifiedoutputvalueisscaledtotherange[
where
whereisthe
maximumerrorsignalduringthetransient.Asthesetpointvariesthisvaluealsovaries.
TheConstraint1isdefinedforobtainingrulecompleteness[39].Also,thisallowsonetodefineaparticularcontrollerthatwouldbelinearlyclosesttothenonlinearfuzzycontrolleroutput.Alternatively,alinearsurfaceequivalenttoanexistingnonlinearfuzzyoutputcanbedeterminedbylinearregressionanalysis.Sincethisworkisofamoregeneralnature,thisconstraintisimposedsothattheequivalentrepresentationcanbejustified.AstheELCisderivedfromLLFLCanditsmaximumoutputisnormalizedwithin[
”denotesthe
equivalentlinearactions.Aftersubstitutingthescalefactors
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURES383
TABLEVI
ALGTERMSOFDIFFERENTFUZZYPIDSTRUCTURES
andassigning,,theELCoutputsshownin(29),(33),and(37)arerewrittenasfollows:Forthree-inputelements
(60)
where
384IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
controlaction.ThebasicdissociationthathasbeendoneforthesimplestLLFLCstructure[see(37)and(39)]isanattempttoidentifytheindividualPIDactionsindissociatedform.Asimilarapproachhasbeenemployedin[6]toidentifyANGtermsofasimplestfuzzyPIcontrollerusingdifferentinferencemethods.Thisisquiteartificialsincethealgebraicdecomposi-tionofnonlineartermsmaynotshowthetruerepresentationoftheindividualfuzzyPIDoutputs.Furthermore,whentherulesarehighlynonlinearandmembershipsarenonuniform,actionidentificationinadissociatedformwillbecomeanextremelydifficultmathematicaltask.ThenonlinearPIDgainsbecomenontransparentforindependentnonlineartuning.Theactionassociationisoneofmajorreasonswhynosatisfactoryin-depthanalysishasbeendoneinidentifyingnonlineartuningparametersinanexplicitformforthemostcommonMamdani-typetwo-inputfuzzyPIDcontrollers.
2)InputCoupling:InthecoupledrulebasesweagainseeinputcouplingintheANGterms.InthetypeIcontroller,allthegainsarehighlycoupledbyallthreeerrorterms.Theadvantageofinputcouplingistheinclusionofgeneralizeddamping[47],whichgiveseachnonlineargaintermtheeffectoferrorderivatives.Thedisadvantageisthattheproportionalandintegralactionsareunnecessarilycomplicatedbytheeffectofdampingandthisresultsinamoresluggishresponse.Forexample,whenaprocessisrespondingslowly,thecoupledactionoferrorratestendstoproducelowequivalentgainfortheapparentnonlinearproportionalaction.ThiscanbenumericallyverifiedbycomparingthemaximumproportionalANGvalueswhenalltheerrorderivativesareforcedtozero.Thisisoneofthereasonswhyin[7]theconventional(typeIII)fuzzyPIstructurewasunabletoperformbetterthananoptimallydesignedlinearPIcontroller.
3)GainDependency:ThisfunctionalbehaviorcanbeseenwhenonefuzzyactionisgeneratedbyanotherfuzzyactionasintypeIII–Vstructuresandcanbedescribedmathematicallybythefollowinganalysis.
a)DependencybetweencoupledPIandPDcontrollers:ThedependencythatexistinthetypeIIIcontrolleroutputsis
givenby
.ReplacingthenormalizedtermswithANGterms,thegaindependencycanbeexpressedby
.Substitutingthenormalized
termswithANGtermsthegaindependencycanbedescribedby
()
Consideringsmallsamplingintervals,theabovecanbede-scribedinacontinuousformbythefollowingnonlineardifferentialequation:
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURESVII.SUMMARY
AND
CONCLUSIONS
ThispaperdescribesresearchtoprovidecontrolengineerswithfundamentalinformationaboutthedesignaspectsoffuzzyPIDcontrollersandaselectionprocedurebyevaluatingthefunctionalbehaviorsofstructures.Thissystematicanal-ysishasfacilitatedtheidentificationofdifferentfuzzyPIDcontrollerstructures,particularlydecoupledandone-inputtypecontrollers,whichhavenotbeencommonlyusedinpreviousapplications.Itisknownthatthecurseofdimensionalityisamajorprobleminfuzzycontrollerdesigntoday[45].Incontrollerdesigns,theidentificationoffuzzycontrollerparametersrelatingtheplantdynamicsorperformanceisparticularlychallenging.Inmostcasesextensivecomputersimulationsorexhaustivenumericalsearchtechniquesareusedforsolvingthemultidimensionalproblem.Inourwork,thishighdimensionaldesignwasidentifiedasatwo-leveltuningproblem.ThechoiceofanyfuzzyPIDstructureshouldbedonebasedontheefficiencyofthesetuninglevelswhileseekingsuperiorperformance.Ourstudyalsohasshowntheexplicitrepresentationofhigh-leveltuningbyANGterms.ForoptimaldesignonehastochoosethenonlineartuningparametersforvaryingtheANGterms.
ThetypeVcontrolleristhesimplest,withthenonlineartuningaccomplishedthroughthefuzzyproportionalaction.However,thegaindependencyinthiscontrolleravoidsin-dependenttuningofintegralandderivativenonlineargains.Theruledecoupledstructuresandone-inputfuzzystructureshavetheadvantageofidentifyingindividualPIDactionsintermsoftheirnonlineartuningparameters.TypesIIandVIstructuresofferindependentgaincontrolforbothofthetuninglevels.ThetypeVIcontrollerismoreanalogoustoalinearPIDcontroller,whereeachcontrolactionisnonlinearlyrelatedtotheerror.ThesystemcanbemadeexactlylikealinearPIDcontrollerbyselectingnonlineartuningparameterstoproducealinearfunctionfortheproportionalsignal.Asan
example,theproperselectionof
andintheone-inputnonlinearlikefuzzycontrollerelementallowsthefuzzyoutputtobealmostlinear(curveCinFig.14).ThereforeproperselectionofnonlineartuningparameterscanproducethelinearcontrollerasaspecialcaseofthefuzzyPIDcontroller.ThisparticularfeaturemakesthefuzzycontrolleralwaysperformeitherbetterthanorequaltoalinearPIDcontrollerandavoidsthepoorerperformanceofthefuzzycontrollersasexperiencedin[7].Thescalingfactorsfortheerrorcanbereadilycomputedbyknowingitsmaximumdeviation,whichisusuallyavailablewiththeresponsedata.Withproperchoiceofnonlineartuning,thetypeIIcontrolleralsocanbemadewithaperfectincremental(velocity)typePIDcontroller.Duetothederivativeerrorinputs,thisstructureissensitivetonoise[48].Howevertheerrorderivativesprovideadditionalinformationandenhancethegeneralizeddampingofthecontrolsystem[47].ThusthetypeIIstructuremaymakethecontrollermorerobustthanthetypeVIcontroller.
Inthisstudywehaveproposedanequivalentlinearcon-trolleranalysistoidentifysecondleveloroveralltuningterms.TheALGtermsderivedfromtheELCanalysishavethesameeffectasthethreePIDgainsofalinearPIDcontroller.Alsowe
385
haveshownthatthefinaloveralltuningtaskcanbesimplifiedtoathreetermtuningproblem.ThereforeonecanfindsuitabletuningheuristicsfortheALGtuningtermsbycorrelatingexistinglinearPIDtuningmethods.
Allcoupledstructureshavethedisadvantageofusingalargenumberofrulescomparedtodecoupledstructures.Sincethenonlinearitytuningparametersareassociatedwiththerules,theparametergrowthalsoincreaseswiththerulegrowth.Therefore,ruledecoupledstructuresarequiteadvantageousintermsofusingtheleastnumberofnonlinearitytuningparameters,thusenablingonetoperformefficientandeasyhighleveltuningforattainingoptimumperformance.
Thedesignofafuzzycontrollerrequiresthebuildingaknowledgebasedsystemwiththespecificnonlinearitytogenerateaspecificperformanceoftheprocessresponse.Thevariationoftuningparametersisalwaysrelatedtotheperformance.Therefore,developmentofasuitabletuningschemeforfuzzyPIDcontrollersrequiresconsiderationofthetwotuninglevels,whereonelevelmatchestheplantdynamicsandthenonlinearbehaviorandthesecondlevelprovidesthenecessarymagnificationstoPIDcontrolactions.
FromthisstudyitcanbeconcludedthattheMamdani-typeconventionaltwo-inputfuzzyPIDstructureproducesaninferiorperformanceintermsoffunctionalbehaviors.Thesedrawbackscanbesummarizedasfollows.
1)ThecoupledrulesproduceanassociatedPIDactionandthereforeidentifyingnonlineartuningparametersforthenonlinearity(orhigh-level)tuningisdifficult.
2)Thecomplexandcouplednatureofbothlinearandnon-lineargainsmakesthetuningoffuzzyPIDcontrollersanextremelyadifficulttask,andthereforeitsapplicationsarelimitedtoeitherthePIorPDversions.
3)Withlinearrules,[see(17)]thenonlinearityobtainedbychangingmembershipfunctionsoftheconsequentfuzzyvariablesislimited[33].Thereforeanynonlin-earitytuningforbettercontrolperformancerequiresanexhaustivesearchoflargenumbersofrulesforobtaininganoptimumcontrolsurface.
Inthispaper,wehavealsodescribedanewanalyticalsolutionprocedurefortheoutputofageneralthree-inputLLFLCsystem.Theinputtransformationprocedurereducesthenumberofnonlinearexpressionsrequiredtorepresentmulti-phasesolutionsforanyLLFLCstructure.TheLLFLCstructurecanbeusedasthebasiccontrollerstructuretocom-parethedynamiccharacteristicsofdifferentfuzzycontrollerstructures.
APPENDIX
DERIVATION
OF
THENONLINEARTERM
or
386IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
Fig.15.Relativepositionsofinputs.
Fig.16.Fuzzyoutputshapescorrespondingtodifferentinputconditions.Theincrementalinputsaremeasuredfromthemodalpositions.Thesubscriptijki+j+k.
TheshadedareasinFig.15showtheserelativeinputcondi-tions.Thisparticularregionisselectedtogiveasimpleand
conciseexpressionforthenonlinearterm
.Thereferenceoutputiswhen
allcrispinputsareatmembershipmodalpositions.TheinputconditionsandtheresultantfuzzyoutputscorrespondingtoeachcaseareshowninFig.16.Forconveniencethesubscript
isrepresentedby
)ofthetrapezoids
producedforeachruleareshowninTableVII–X.Asanexample,theruleR1showninTableVIIIreadsas“If(
isand)thenis
MANNetal.:FUZZYPIDCONTROLLERSTRUCTURES387
TABLEIX
RULEIMPLICATIONANDFUZZYOUTPUTSFORCASEIII
TABLEX
RULEIMPLICATIONANDFUZZYOUTPUTSFORCASEIV
THE
TABLEXI
NONLINEAROUTPUTTERM
Defuzzification:TheCOAbaseddefuzzifiedvaluecanbeexpressedas[11]
.Thisreferstothecenterof
theshadedareasshowninFig.16.Fromthesediagramsthemembershipheightsshowninthe
and
388IEEETRANSACTIONSONSYSTEMS,MAN,ANDCYBERNETICS—PARTB:CYBERNETICS,VOL.29,NO.3,JUNE1999
Research,R.Trappl,Ed.Amsterdam,TheNetherlands:Elsevier,1982,pp.721–728.
[19]Y.F.LiandC.C.Lau,“DevelopmentoffuzzyalgorithmsforservoSystems,”IEEEContr.Syst.Mag.,pp.65–71,Aug.19.[20]F.Mat`ıa,A.Jim´enez,R.Gal`an,andR.Sanz,“Fuzzycontrollers:Liftingthelinear-nonlinearfrontier,”FuzzySetsSyst.,vol.52,pp.113–128,1992.
[21]
J.Ambuel,L.Steenhoek,R.Smith,andT.Colvin,“Controlofhydro-statictransmissionoutputspeed:DevelopmentandcomparisonofPIandhybridfuzzy-PIcontrollers,”Amer.Soc.Agric.Eng.,vol.36,pp.1057–10,1993.
[22]S.SugawaraandT.Suzuki,“Applicationoffuzzycontroltoairconditioningenvironment,”J.Therm.Biol.,vol.18,pp.465–472,1993.[23]S.J.QinandG.Borders,“Amultiregionfuzzylogiccontrollerfornonlinearprocesscontrol,”IEEETrans.FuzzySyst.,vol.2,pp.74–81,1994.
[24]S.Sheoni,K.Ashenayi,andM.Timmerman,“Implementationofalearningcontroller,”IEEEContr.Syst.Mag.,pp.73–80,June1995.[25]B.Armstrong,“FLCdesignforboundedseparablefunctionswithlinearinput–outputrelationsasaspecialcase,”IEEETrans.FuzzySyst.,vol.4,pp.72–79,1996.
[26]J.R.Layne,K.M.Passino,andS.Yurkovich,“Fuzzylearningcontrolforantiskidbrakingsystems,”IEEETrans.Contr.Syst.Technol.,vol.1,pp.122–129,1993.
[27]S.Murakami,F.Takemoto,H.F.Fujimura,andE.Ide,“Weld-linetrackingcontrolofarcweldingrobotusingfuzzylogiccontroller,”FuzzySetsSyst.,vol.32,pp.221–237,19.
[28]C.J.LiandJ.C.Tzou,“AnewlearningfuzzycontrollerbasedontheP-integratorconcept,”FuzzySetsSyst.,vol.48,pp.297–303,1992.[29]R.Palm,“Fuzzycontrollerforasensorguidedrobotmanipulator,”FuzzySetsSyst.,vol.31,pp.133–149,19.
[30]S.M.SmithandD.J.Comer,“AutomatedcalibrationofafuzzyLogiccontrollerusingacellstatespacealgorithm,”IEEEContr.Syst.Mag.,pp.18–28,Aug.1991.
[31]Z.ZhangandM.Mizumoto,“Onruleself-generatingforfuzzycontrol,”Int.J.Intell.Syst.,vol.9,pp.1047–1057,1994.
[32]S.K.NamandW.S.Yoo,“FuzzyPIDcontrolwithacceleratedreasoningfordcservomotors,”Eng.Applicat.Artif.Intell.,vol.7,pp.559–569,1994.
[33]H.-X.LiandH.B.Gatland,“Conventionalfuzzycontrolanditsenhancement,”IEEETrans.Syst.,Man,Cybern.B,vol.26,pp.791–797,1996.
[34]S.-Z.He,S.Tan,F.-L.Xu,andP.-Z.Wang,“Fuzzyself-tuningofPIDcontrollers,”FuzzySetsSyst.,vol.56,pp.37–46,1993.
[35]D.Misir,H.A.Malki,andG.Chen,“Designandanalysisofafuzzyproportional-integral-derivativecontroller,”FuzzySetsSyst.,vol.79,pp.297–314,1996.
[36]C.J.Harris,C.G.Moore,andM.Brown,IntelligentControl:AspectsofFuzzyLogicandNeuralNets.London,U.K.:WorldScientific,1993.[37]H.A.Malki,D.Misir,D.Feigenspan,andG.Chen,“FuzzyPIDcontrolofaflexible-jointrobotarmwithuncertaintiesfromtime-varyingloads,”IEEETrans.Contr.Syst.Technol.,vol.5,pp.371–378,1997.
[38]B.-G.Hu,G.K.I.Mann,andR.G.Gosine,“Theoriticandgeneticdesignofathree-rulefuzzyPIcontroller,”inProc.6thIEEEInt.Conf.FuzzySystems,Barcelona,Spain,July1–5,1997,vol.1,pp.4–496.[39]D.Driankov,H.Hellendoorn,andM.Reinfrank,AnIntroductiontoFuzzyControl.NewYork:Springer-Verlag,1996.
[40]L.-X.Wang,ACourseinFuzzySystemsandControl.EnglewoodCliffs,NJ:Prentice-Hall,1997.
[41]
A.HomaifarandE.McCormick,“Simultaneousdesignofmembershipfunctionsandrulesetsforfuzzycontrollersusinggeneticalgorithms,”IEEETrans.Syst.,Man,Cybern.,vol.3,pp.129–138,1995.
[42]L.A.Zadeh,“Theconceptofalinguisticvariableanditsapplicationto
approximatereasoningI,II,III,”Inf.Sci.,vols.8/9,1975.
[43]C.W.deSilvaandA.G.J.MacFarlane,Knowledge-BasedControl
withApplicationtoRobots.Berlin,Germany:Springer-Verlag,19,vol.123.
[44]J.-X.Xu,C.Liu,andC.C.Hang,“TuningoffuzzyPIcontrollersbased
ongain/phasemarginspecificationsandITAEindex,”ISATrans.,vol.35,pp.79–91,1996.
[45]B.Kosko,FuzzyEngineering.EnglewoodCliffs,NJ:Prentice-Hall,
1997.
[46]H.Ying,“Sufficientconditionsongeneralfuzzysystemsasfunction
approximators,”Automatica,vol.30,pp.521–525,1994.[47]D.E.ThomasandB.A.-H´elouvry,“Fuzzylogiccontrol—Ataxonomy
ofdemonstratedbenefits,”Proc.IEEE,vol.83,pp.407–421,1995.[48]D.W.Clarke,“PIDalgorithmsandtheircomputerimplementation,”
Trans.Inst.Meas.Contr.,vol.6,pp.305–316,1984.
GeorgeK.I.MannreceivedtheB.Sc.(honors)degreeinengineeringfromtheUniversityofMoratuwa,SriLanka,in1984andtheM.Sc.degreeincomputerintegratedmanufacturefromLoughboroughUniversityofTechnology,U.K.,in19.HeiscurrentlypursuingthePh.D.degreeatMemorialUniversityofNewfoundland,St.John’s,NF,Canada.
HewaspreviouslyaLecturerintheDepartmentofMechanicalEngineering,UniversityofMoratuwa.Hisresearchinterestsareclassical/intelligentcontrolandmanufacturingengineering.
Bao-GangHu(M’94)receivedtheM.Eng.degreein1983fromtheUniversityofScienceandTechnology,Beijing,China,andthePh.D.degreein1993fromMcMasterUniversity,Hamilton,Ont.,Canada,bothinmechanicalengineering.
From1983to1987,hewaswiththeDepartmentofMechanicalEngineering,UniversityofScienceandTechnology.In1993,hewaswithNEFAB,Inc.,Canada.From1994to1997,hewasaResearchEngineerandSeniorResearchEngineeratC-CORE(CenterforColdOceanResourcesEngineering),Memo-rialUniversityofNewfoundland,St.John’s,NF,Canada.HeiscurrentlyanAssociateProfessor,NationalLaboratoryofPatternRecognition,InstituteofAutomation,ChineseAcademicofScience,Beijing,China.Hisresearchinterestsincludefuzzycontrol,patternrecognition,andintelligentsystems.
RaymondG.Gosine(S’84–M’93)receivedtheB.Eng.(Elect.)degreein1986fromtheMemorialUniversityofNewfoundland,Canada,andthePh.D.degreein1990fromCambridgeUniversity,Cambridge,U.K.
In1990and1991,hewasaResearchAssociateinEngineering,UniversityofCambridge,andaBye-FellowofSelwynCollege,Cambridge.From1991to1993,hewastheNSERCJuniorChairofIndustrialAutomationandanAssistantProfessor,DepartmentofMechanicalEngineering,UniversityofBritishColumbia.,Vancouver,B.C.,Canada.HeisnowanAssociateProfessorofEngineeringatMemorialUniversityofNewfoundlandandistheDirectorofIntelligentSystemsatC-CORE.Hisresearchinterestsareintheareaofindustrialautomation.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- kqyc.cn 版权所有 赣ICP备2024042808号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务