SchedulabilityCriterionandPerformanceAnalysisofCoordinatedSchedulers
ChengzhiLiandEdwardW.Knightly
DepartmentofElectricalandComputerEngineering,RiceUniversity
6100SMainStreet,Houston,TX77005,USA(chengzhi@rice.edu,knightly@rice.edu)Inter-servercoordinatedschedulingisamechanismfordownstreamnodestoincreaseorde-creaseapacket’spriorityaccordingtothecongestionincurredatupstreamnodes.Inthispaper,wederiveanend-to-endschedulabilityconditionforabroadclassofcoordinatedschedulersthatincludesCJVCandCEDF.Incontrasttopreviousapproaches,ourtechniquepurposelyallowsflowstoviolatetheirlocalpriorityindexeswhilestillprovidinganend-to-enddelaybound.Weshowthatunderasimplepriorityassignmentscheme,coordinatedschedulerscanoutperformWFQschedulers,whilereplacingper-flowschedulingoperationswithasimplecoordinationrule.Finally,weillustratetheperformanceadvantagesofcoordinationthroughnumericalex-amplesandsimulationexperiments.1.INTRODUCTION
Inthepastdecade,therehasbeengreatprogressinthedesignofpacketschedulingalgo-rithms,includingservicedisciplineswhichachieveperformanceisolation[19,25],qualityofservicedifferentiation[9,12,18],andscalablecore-statelessimplementation[4,22,27].
Simultaneously,newtheoreticaltoolshavebeendevisedtoanalyzetheperformanceprop-ertiesofsuchmulti-classschedulers.Forexample,exactdelayboundsforEarliestDeadlineFirst(EDF)andStrictPriority(SP)schedulersarederivedin[17].Moreover,multi-nodedelayboundshavebeendevelopedfornetworksofelementscharacterizedbyservicecurvesusing“networkcalculus”[3,8,21],anapproachwhichencompassesandgeneralizespreviousresultsfornetworksofWeightedFairQueueing(WFQ)servers[20]andrate-controlledservers[14,25].Ingeneral,suchtechniquesprovideschedulabilityconditions,i.e.,constraintsthat,ifsatisfied,ensurethatallpacketsofallflowswillmeettheirrespectivedelayboundswithoutviolationorloss.
Recently,aclassofschedulershasbeenstudiedwhichemploycoordinationofprioritiesamongnodes[2,15,28].Aschedulerthatemployscoordinationcangiveapackethigherorlowerpriorityatdownstreamnodesdependingonwhetherthepacketwasservicedlateorearlyatupstreamnodes.ThisintuitivelyappealingconcepthasbeenappliedinanumberofservicedisciplinesproposedintheliteratureincludingFIFO+[6]andGlobalEDF[5].Moreover,suchschedulershavepotentialapplicationstofuturemulti-servicenetworkssincetheycanprovideend-to-endservicesusingsimple,workconserving,per-nodeschedulingalgorithmsthatdonot
requireper-flowoperations.Indeed,itwasshownin[15]thatcorestatelessservicedisciplinessuchasCore-statelessJitterVirtualClock(CJVC)[23]canalsobeexpressedbyasimplecoor-dinationmechanism.
Thegoalisthispaperistoprovideaschedulabilityconditionandanalyticalframeworkforcoordinatedschedulers.Ourapproachrepresentsafundamentaldeparturefromprevioustech-niquesintwoways.First,ourschedulabilityconditionallowspacketstoviolatelocalper-nodeconstraints,whilestillensuringdelayboundsaresatisfiedend-to-end,i.e.,bythefinalhop.Al-lowingsuchlocalviolationsiscrucialtoexploitingthekeymulti-nodepropertyofcoordinatedschedulers.Consequently,techniquesthatrequireallpacketstosatisfytheirlocalconstraintsateachnodetoensureend-to-endschedulabilitycannotbeapplied.Second,previoustechniquesrelyoneitherper-flowtrafficre-shaping[14,25]orper-flowscheduling[3,8,20,21](suchasinWFQ)toderivemulti-nodeschedulabilityconditions.Incontrast,weconsiderascenarioofwork-conservingserverswithnoper-flowoperations,andthereforeachievethecore-statelesspropertydefinedin[22].
Thecontributionofthispaperisasfollows.First,wedevelopanend-to-endschedulabilityconditionforabroadclassofcoordinatedschedulersthatincludesCoordinatedEDF(CEDF)andCJVC.Ourkeytechniqueistointroduceavirtualpartitionofthetrafficintoessential,andnon-essentialtraffic,whereonlytheformertrafficcanimpedeapacketinmeetingitsdelaybound.Withthisconcept,wederiveaboundontheessentialtrafficatdownstreamnodesandshowthatdistortionoftheessentialtrafficisconfinedtowithinanarrowrange.Inotherwords,weshowthatcoordinationlimitsdownstreamdistortionanalogoustothewayper-flowtrafficreshapingeliminatesdistortion.
Second,westudytheproblemofassigninglocalpriorityindexes.Weshowthatwithaparticularassignmentscheme,coordinatedschedulerscanachievenotonlythesameend-to-enddelayboundasWFQ,butalsothetighterend-to-enddelayboundthanWFQ,yetwithoutper-flowpacketforwardinginthenetworkcore.Inotherwords,weestablishthatanysetofflowsthatcanbescheduledinWFQnetworkscanalsobescheduledincoordinatedschedulingnetworks.
Finally,weillustrateandquantifythepracticaladvantagesofcoordinatedschedulingwithasetofnumericalexamplesandns-2simulationexperiments.WefirstdeviseasimpleexamplewiththreeflowstoillustratethatcoordinatedschedulerscanachievealowerdelayboundthanWFQschedulers.WethenusesimulationsofexponentialandParetoon-offtrafficflowsanda6-nodenetworktoillustratestatisticaldifferencesbetweencoordinatedscheduling,EDF,andWFQ.
Theremainderofthispaperisorganizedasfollows.InSection2,weprovidebackgroundandaprecisedefinitionofinter-servercoordination.InsectionSection3,wedevelopakeytoolformulti-nodeanalysisandshowhowtoboundtheessentialtrafficatdownstreamnodes.InSection4,weusethistrafficboundtoprovideaglobalschedulabilitycriterionfornetworksusingcoordinatedscheduling.Next,inSection5,westudypriorityindexassignmentanditsre-lationshiptoWFQ.Finally,inSection6,wecomparecoordinatedandnon-coordinatedservicedisciplinesusingnumericalexamplesandsimulations,andinSection7weconclude.
2.BACKGROUNDONINTER-SERVERCOORDINATION
Inthissection,weprovideaformaldefinitionofcoordinationamongservers.Wethenillus-tratethegeneralityofthedefinitionbydescribinghowservicedisciplinesfromtheliterature,namelyCEDFandCJVC,canbecharacterizedasexamplesofcoordinatedschedulers.2.1.DefinitionandProperties
Definition1(CoordinatedNetworkScheduling)Consideraserverwhichservicespacketsinincreasingorderoftheirpriorityindexes.AschedulerpossessestheCNSpropertyif
(1)
whereisthepriorityindexassignedtothepacketofflowatitshop;isthetimewhenthepacketofflowarrivesatitsfirsthop;andaretheincrementofthepriorityindexofthepacketofflowatthecorrespondinghops;()isdeterminedwhenthepacketoftheflowarrivesatitsfirsthopand,where.
ThekeypropertyoftheCNSdisciplineisthatthepriorityindexofeachpacketatadown-streamserverdependsonitspriorityindexatupstreamservers,whichinturndependsonitsentrancetimeintothenetwork.Therefore,ifapacketviolatesitspriorityindexatanupstreamserver,downstreamserverswillincreasethepacket’spriority,therebyincreasingthelikelihoodthatthepacketwillmeetitsend-to-enddelaybound.Similarly,ifapacketarrives“early”duetoalackofcongestionupstream,downstreamserverswillreducethepriorityofthepacket,en-ablingotherpacketstobeservicedaheadofit.Thus,eventhoughthedistributedserversoperateindependently,thepriorityindexofeachpacketiscommunicateddownstreamviainsertionofalabelintothepacketheader(e.g.,asdescribedin[22])sothattheservers(virtually)coordinatetoprovideanend-to-endservice.
2.2.CJVCandCEDF
AnexampleofcoordinatedschedulingisCore-statelessJitterVirtualClock.CJVCwaspro-posedin[23]asamechanismforachievingguaranteedservicewithoutper-flowstateinthenetworkcore.CJVCuses“dynamicpacketstate”tostoreinformationineachpacketheadercontainingtheeligibletimeofthepacketattheingressrouterandaslackvariablethatallowscorerouterstodeterminethelocalpriorityindexofthepacket.Forawork-conservingvariantofCJVC,thepriorityindexofpacketofflowatnodeisgivenby:
(2)
whereflow-packetsizeandreservedbandwidtharegivenbyandrespectively,andis
theslackvariableassignedtothepacketofflowbeforeitentersthenetwork.Furthermore,itcanbeverifiedthatand
In[1,2,5],coordinationwithinthecontextofEDFwasstudied.WerefertosuchschedulersasCoordinatedEarliestDeadlineFirst(CEDF)ifthepriorityindexesareassignedas
(3)
isaconstant(expectedlocaldelayclearlyexpressibleintheformofEquation(1),where
bound)determinedforthehopofflow.Itisneededtopointoutthatinthiscase,
and.
OurtheoreticalresultsaddressallschedulerssatisfyingtheCNSdefinition,andthroughoutthispaper,weuseCEDFandCJVCasexampleservicedisciplines.Discussionofothersched-ulerscanbefoundin[15,27].
2.3.Example
ConsiderthesimpleexampleofFigure1inwhichthreepacketsofflowarrivetothenetworkatrespectively,andtraversetwohopswith.Intheexample,allpacketshaveidenticalsize,thelinkspeedis1packetpertimeunit,andcrosstrafficexistsatbothhops.Atthefirsthop,thesethreepacketsareassignedpriorityindexes(deadlines)of5,6,and7respectively,bybothCNSandEDF.Supposefurtherthatthesethreepacketsdepartfromthefirsthopattimes3,4,and10respectively,sothatthethirdpacketmissesitslocaldeadlineby3timeunitsduetocrosstrafficwithhigherpriority.Accordingtothearrivaltimesatthesecondhop,thesethreepacketsareassignedpriorityindexesof8,9,and15byEDF,whereastheindexesare10,11,and12forCNS.Intheexample,withfurthercrosstrafficatthesecondhop,thethirdpackethashigherpriorityintheCNSnetworkthantheEDFnetwork,andthereforeisabletomeetbothitslocaldelayboundandglobaldelaybound.Incontrast,intheEDFnetwork,thethirdpacketmeetsitslocaldelayboundatthesecondhop,butisnotableto“catchup”,andmeetitsend-to-enddelaybound.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Packet Arrival Eventδ = 5 msecδ = 5 msecPacket Arrival Eventδ = 5 msecPacket Arrival Event0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Packet Priority IndexPacket Priority IndexPacket Priority Index0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Packet Departure EventPacket Departure EventPacket Departure Event(a)CNSandEDFattheFirstHop(b)EDFattheSecondHopFigure1.IllustrationofCoordination
(c)CNSattheSecondHop
Thissimpleexampleillustrateshowdistributedserverscanbeforcedto(virtually)coordinatepriorityindexestoimprovethelikelihoodofsatisfyinganend-to-enddelayconstraint.3.TRAFFICCHARACTERIZATIONINDOWNSTREAMNODES
Inmulti-nodenetworkswithouttrafficre-shaping,trafficcharacteristicsaredistortedatdown-streamnodesascomparedtotheirpropertiesatthenetworkentrance.Inthissection,wederiveaburstinessboundforarrivingtrafficatdownstreamnodes,whichweuseasabasisforderivingaglobalschedulabilitycriterioninthenextsection.
3.1.PreliminariesLetdenotethetotalarrivaltrafficofflow-atitsduringtimeinterval.Moreprecisely,wehave
hop(denotedasserver
)(4)
2
.Ignoringisthetimewhentheflow-packetwithsizearrivesatserverwhere
thepropagationdelay,thedeparturetrafficofflowfromserveristhearrivaltrafficofflowtoserver.Tosimplifynotation,weusetodenotethedeparturetrafficofflowfromserveraswellasthearrivaltrafficofflowtoserver.Asin[7],wecallanon-negativeandnon-decreasingfunctionasthesourcetrafficenvelopeofflowif,
(5)
Wealsoassumethatthenetworkisstableiffor
,
(6)
whereisthenumberoftotalserversinthenetworkandisthesetofallflowsservedbyserverandisthecapacityofserver.Accordingto[20,24],acyclicnetworksorcyclicnetworkswithringtopologyarestableifInequality(6)issatisfied.
3.2.VirtualPartition
Here,wedefineessentialtraffic3asafundamentalnotionforanalysisofcoordinatedsched-ulersthatenablesustoaccuratelyboundthequeueingdelayexperiencedbythetraffic.Inparticular,foragiventime,allarrivingtrafficofserverarrivingincanbevirtuallydecomposedaccordingtowhetherornotitspriorityindexislargerthan.Asonlytheportionoftrafficwithpriorityindexsmallerthanorequaltotimeaffectsthetimewhentrafficwithpriorityindexisserved,werefertothistrafficasessentialtraffic,whichweformallydefineasfollows.
Definition2(EssentialTraffic)Theessentialarrivaltrafficofflowattimerelativeto()atserverisdefinedasthetotalflow-trafficwithpriorityindexnolargerthanarrivingatserverin,i.e.,
(7)
Asanexample,forthetrafficwiththearrivalpatterndescribedinFigure1(a),somevaluesofitsessentialtrafficaregivenas:if;if;
if;if.
Foraserverwithpriorityscheduling,oneofitsimportantcharacteristicsisthevoidtimebeforeagiventime,andrelativeto(),denotedbyanddefinedas
and
(8)
whereisthetotalamountoftraffic,withpriorityindexsmallerthanorequalto,queueingatserverattime.Inotherwords,voidtimereferstothelargesttimelessthansuchthatthereisnotrafficbackloggedwithpriorityindexsmallerthanorequalto.Noticethatforaninitiallyidlenetwork,thevoidtimeisguaranteedtoexist.
3.3.BurstinessBoundattheIngressServer
Tocomputetheboundsofqueueingdelayssufferedbythetrafficatserverattime,weonlyneedtoconsidertheessentialtrafficarrivingin.Thisisbecauseisthelasttimebeforethatthereisnotrafficwithpriorityindexsmallerthanorequaltoqueueingatserver.Theenvelopeoftheessentialtrafficofaflowinsuchanintervalisdefinedasfollows.
Definition3(EssentialTrafficEnvelope)Anon-negative,non-decreasingfunctioncalledtheessentialtrafficenvelopeofflow-trafficatitshopif,
is(9)
where
and
isdefinedinEquation(8).4
Sincetheessentialtrafficatadownstreamserverdependsonthecorrespondingessentialtrafficattheingressserver(i.e.,thenetworkentrance),wefirstprovideanupperboundfortheessentialtrafficenvelopeattheingressserver.
Lemma1Anessentialtrafficenvelopeofflowatitsfirsthopisgivenby:
(10)
Proof:See[16].
BasedonLemma1,wehave
theschedulabilitycriterioninthenextsection.
,whichwillbeusedtoderive
3.4.DownstreamServers
Attheoutputofamultiplexer,atrafficflow’scharacteristics(suchasitstrafficenvelope)aredistorted.Withoutadditionalmechanismssuchasper-flowre-shaping,thisdistortioncanbecomemoresevereateachDownstreamnode.Wenowshowthatundercoordinatednetworkschedulers,thedistortionoftheessentialtrafficislimitedduetocoordinationitself.Thatis,aflow’sdistortionislimitedbydownstreammechanismstocatchuplatepacketsanddelayearlypackets.Recallthatweonlyconsiderstablenetworks,sothatthequeueingdelayisbounded(see[20]).
Lemma2Ifeachflow-packethasnotmisseditspriorityindexesatserverbymorethan,thenanessentialtrafficenvelopeofflowatits)isgivenby
hop(server
(11)
where
.
Proof:See[16].
Thislemmacharacterizesakeypropertyofcoordinatedschedulers,namelythataflow’strafficcharacteristicsareminimallydistortedatdownstreamservers.Specifically,ifisaconstantfor,wecanusethesameessentialtrafficenvelopetoevaluatethelocalqueueingdelaysufferedbyflowateachserveralongitspath.
4.END-TO-ENDSCHEDULABILITYCRITERION
Inthissection,wederiveageneralend-to-endschedulabilitycriterionforcoordinatedsched-ulers.Inourapproach,weallowpacketstoviolatetheirlocalpriorityindexesandexploitthecoordinationpropertytoobtainanend-to-enddelaybound.Moreover,sincepriorityindexesarenotrequiredtobeequivalenttodelaybounds,theapproachprovidesflexibilityinassignmentoflocalpriorityindexeswhichwefurtherexploitinthenextsection.
4.1.ARecursiveConditionforViolatingPackets
ForanisolatedEDFscheduler,theschedulabilitycondition(nopacketviolatesitspriorityindex)hasthoroughlybeendiscussedinseveralpapers,e.g.,[13,17,11].However,whentheschedulabilityconditioncannotbeensatisfied,itisimportanttoknowwhatistheboundfortheamountoftimebywhichpacketsmisstheirdeadlines(priorityindexes),speciallyforcoordi-natedschedulersthatallowpacketstoviolatetheirlocaldeadlines.BasedonthekeypropertyofcoordinatedschedulersexploitedinLemma2,weprovideaconditionforboundingthetimebywhichpacketsmisstheirlocaldeadlines(priorityindexes).
Theorem1Ifeacharrivingpacketatserverhasnotmisseditspriorityindexesattheprevi-5
,thenforousserverbymorethansuchthatfor
agivenflow,itspacketswillmisstheirpriorityindexatserverbyatmostif
,
(12)
where
,
,and
.
Proof:See[16].If,,and,Equation(12)istheschedulabilityconditionprovidedin[17].Thus,Theorem1isageneralizationoftheschedulabilityconditionforanisolatedEDFscheduler.
4.2.End-to-EndDelayBounds
SincetheschedulabilitycriteriongiveninEquation(12)decouplesthepriorityindexfromthedelaybound,thefollowingcorollarycanbeusedtocomputetheend-to-enddelaybound.Corollary1Giventhepriorityindexincrementassignmentsand(and
)foreachflow,iftheconditionsofTheorem1aresatisfiedforeachflowateachserver,thentheend-to-endflow-packetdelayisboundedby
(13)
Proof:See[16].
ObservethatthemaximumqueueingdelayofEquation(13)hasthreecomponents.Thefirsttermhastwointerpretationswhichweillustratebyexamples.IfthenetworkperformsCEDFasinEquation(3),thenisaconstantandrepresentsthelocaldelayboundattheingressnode.Alternatively,ifthenetworkperformsCJVC,then
i.e.,itisthemaximumpacketsizedividedbytheguaranteedrate,plusthemaximumamountoftimeaflow-packetarrivingbeforeitspreviouspacketpriorityindex.Thesecondtermisthesumoftheupperboundsofthelocalpriorityindexesfromthesecondtofinalhop.Thethirdtermrepresentsthedelaybywhichpacketsareallowedtoviolatethepriorityindexatthefinalhop.AswewillshowinSection5,thereisflexibilityinhowtoassignallthreeofthesecomponentstoobtaindifferentend-to-endperformanceproperties.
4.3.LeakyBucketFlows
Iftheessentialtrafficenvelopesattheingressserversareboundedbyaffinefunctions,theschedulabilitycriterionofTheorem1canbesimplified.Thisscenarioarisesforbothleakybucketregulatedtrafficaswellasvirtualleaky-bucketsmoothersasdescribedinSection5.1.Corollary2Ifeachflowhasand
thenInequality(12)inTheorem1canbesimplifiedas:ifforany
forwith
,,
where
6
,
,and
.
Proof:See[16].
Inthenextsection,weapplythissimplifiedschedulabilitycriteriontoassignpriorityindexesatdownstreamservers.
5.PRIORITYINDEXASSIGNMENTFOREND-TO-ENDSERVICE
Inthissection,wedevelopaparticularpriorityindexassignmentschemeandshowthatunderthescheme,coordinatedschedulerscanachievethesameend-to-enddelayboundasWFQ.
5.1.AtIngressServers
Supposetheingressnodeservicespacketsaccordingtothevirtualclockservicediscipline[10,26].Thenthepriorityindexincrementsattheingressserverare
fromthevirtualserverwithcapacity
isthedeparturetimeofthepacketofflow
,accordingtoDefinition3andLemma1,
(15)
If
,thenaccordingtoTheorem2in[10],
(17)
Noticethatinthiscase,
(19)
Proof:See[16].
Noticethattheend-to-enddelayboundinEquation(19)isthesameasthatforWFQ[20]andVC[10].Itisneededtopointoutthat,withcoordinationandtheabovesimplepriorityindexassignments,Theorem2plusasimpleexampleprovidedinthenextsectionistoourknowledgethefirstproofthatcore-statelessschedulerscanoutperformWFQschedulers.
Finally,weobservethatcoordinatedschedulerscanemployheterogeneouslyallocatedper-nodepriorityassignmentsinordertobetterutilizenetworkresources.Forexample,flowscouldallocatealessstringentpriorityindextoheavilyloadednodes.Ageneralassignmentschemeremainsanimportantissueforfuturestudyincoordinatedschedulersaswellasotherservicedisciplines.
6.COORDINATIONVS.NON-COORDINATION:NUMERICALEXAMPLESANDSIM-ULATIONS
Table1
TrafficParametersandPriorityIndexAssignment.flow1
flow2flow3
.Thetrafficparametersandthepriorityindexassignmentsare
summarizedinTable1.
Sinceeachpacketdoesnotsufferthequeueingdelayatitsfirsthop,
andtheparametersthatareneededwhencheckingthescedulabilityforflowsat
server1aregiveninTable2.
Table2
ParametersforServer1.
,weneedtoverify
(20)
and
(21)
Toverifyflow-2packetswillmisstheirpriorityindexesatserver1nomorethanweneedtocheck
,
(22)
UsingtheparametersgiveninTable1andTable2,itiseasytoverifyInequalities(20)(21)(22).
Similarly,usingtheparametersgiveninTable1andTable3,itiseasytoverifyflow-1packetswillmisstheirpriorityindexesatserver2nomorethan
ThenaccordingtoCorollary1,wehavethefollowingend-to-enddelayboundsthatcanbeguaranteedbytheCNSdiscipline.
forflow1,mustbe.Hencethebandwidths(weight)reservedforflow2atserver
1andflow3atserver2mustbezero.Therefore,inthiscase,WFQdegeneratestothestrictpriorityservicediscipline(flow1hasthehighestpriority).Accordingtotheresultprovidedin[17],theminimumdelayboundsguaranteedbythestrictpriorityservicedisciplinetoflows2and3are
6.2.SimulationExperiments
Throughoutthispaper,wehavefocusedonschedulabilityconditionsforcoordinatedsched-ulers.Here,weusens-2simulationstoillustratepotentialperformanceimprovementsfromcoordinationnotonlyinthemaximumend-to-enddelay,butalsoinstatisticaldelayproperties.
Server 1Server 2Server 3Server 4Server 5Server 6Path for target trafficPath for background traffic Figure3.SimulationTopology
WeconsiderasimpletandemnetworktopologyasdepictedinFigure3.Alllinkcapacitiesare10Mb/sec,packetlengthsare100bytes,andpropagationdelaysare0.Thereareseveralflows(varyingfrom25to60)enteringthenetworkfromthefirstserverandexitingfromthelastserver.Theseflowshavethelongestpathandarechosentobethetargetclassforanalysis.Inaddition,eachserveralsoservestwoclassesofcrosstrafficconsistingof125flowswhichtraverseasinglerouterandthenexitthenetwork,and125flowsthattraversetworoutersandthenexit.Thecrosstraffichasthesamecharacteristicsasthetargettraffic.
99% Percentile End-to-End Delay (msec)25020015010050WFQCNS99% Percentile End-to-End Delay (msec)30030025020015010050EDFCNS275280285290295300305310275280285290295300305310Number of Flows at Each ServerNumber of Flows at Each Server(a)ComparisonofCNSandWFQFigure4.ExponentialOn-OffTraffic
(b)ComparisonofCNSandEDF
WesimulatebothexponentialandParetoon-offflowswithon-rateKb/sec,meanontime312msecandmeanofftime325msecandParetashapeparameter1.9.Theincrementofthepriorityindexateachserveris1msecforthetargettraffic,3msecforthecrosstrafficwitha2-hoppath,and6msecforcrosstrafficwitha1-hoppath.Wecomparethe99-percentileend-to-enddelayexperiencedbythetargettrafficfornetworkswithCNS,EDF,andWFQschedulers.ThesimulationresultsaredepictedinFigures4and5.Eachpointinthefigurerepresentstheresultofa200secondns-2simulationrun,withaveragesreportedovermultiplesimulations.Thefigureshowsthe99.9-percentileoftheend-to-enddelaydistributionofthetargettrafficasafunctionofthenumberofflowspassingeachserver.
Wemaketwoobservationsregardingthefigures.First,coordinationhasreducedthe99-percentileend-to-enddelayexperiencedbythetargettraffic:forexample,inFigure4,wheneachserversupports295exponentialon-offtrafficflows(45targetflowsand250crosstraffic
flows),theend-to-enddelayexperiencedbythetargettrafficis40msecforCNS,66msecforWFQ,and51msecforEDF.ThereasonforthisisthatinaCNSnetwork,packetswhichsufferexcessivequeueingdelaysatupstreamnodeshaveanopportunityto“catchup”atadownstreamnode,byhavingahigher(relative)priorityindex.Incontrast,inEDForWFQnetworks,eachroutertreatspacketslocallyaccordingtotheirarrivaltime,withoutregardtowhetherthisarrivaltimeislateorearly.
Second,whentrafficismorebursty,e.g.,forParetoon-offtraffic,theadvantageofCNSoverWFQorEDFisevenmorepronounced.Forexample,inFigure5,wheneachserversupports295Paretoon-offtrafficflows(45targetflowsand250crosstrafficflows),theend-to-enddelayexperiencedbythetargettrafficis52msecforCNS,111msecforWFQ,and109msecforEDF.Thereasonforthisisthattheheavy-tailedburstdurationsofthistrafficplaceaheavierburdenontheschedulerduringperiodsofoverload.Throughinter-servercoordination,CNScanbetterdistributethisoverloadamongnetworknodesandreduceaflow’send-to-enddelay.
99% Percentile End-to-End Delay (msec)25020015010050WFQCNS99% Percentile End-to-End Delay (msec)30030025020015010050EDFCNS275280285290295300305310275280285290295300305310Number of Flows at Each ServerNumber of Flows at Each Server(a)ComparisonofCNSandWFQFigure5.ParetoOn-OffTraffic
(b)ComparisonofCNSandEDF
7.CONCLUSION
Inthispaper,wederivedanend-to-endschedulabilitycriterionforaclassofworkconservingservicedisciplinestermedcoordinatedschedulers.Exploitingthecoordinationproperty,weshowedthatthe“essentialtraffic”foraflowincursonlyminimaldistortionatdownstreamnodes.Moreover,weshowedthatpacketscanbeallowedtoviolatelocalpriorityindexes(suchaslocaldeadlines)andstillsatisfyanend-to-endrequirementby“catchingup”withhigherprioritydownstream.Wethendevisedapriorityassignmentschemeandshowedthatunderthescheme,coordinatedschedulerscanoutperformWFQschedulers.Finally,wepresentednumericalandsimulationresultstoquantifytheperformancegainsofcoordination.REFERENCES
1.M.Andrews.Probabilisticend-to-enddelayboundsforearliestdeadlinefirstscheduling.InProceedingsof
IEEEINFOCOM2000,TelAviv,Israel,March2000.
2.M.AndrewsandL.Zhang.Minimizingend-to-enddelayinhigh-speednetworkswithasimplecoordinated
schedule.InProceedingsofIEEEINFOCOM’99,NewYork,NY,March1999.
3.J.LeBoudec.Applicationofnetworkcalculustoguaranteedservicenetworks.IEEETransactionsonInfor-mationTheory,44(3):1087–96,May1998.
4.Z.Cao,Z.Wang,andE.Zegura.Rainbowfairqueueing:Fairbandwidthsharingwithoutper-flowstate.In
ProceedingsofIEEEINFOCOM2000,TelAviv,Israel,March2000.
5.T.Chen,J.Walrand,andD.Messerschmitt.Dynamicpriorityprotocolsforpacketvoice.IEEEJournalon
SelectedAreasinCommunications,7(5):632–3,19.
6.D.Clark,S.Shenker,andL.Zhang.Supportingreal-timeapplicationsinanintegratedservicespacketnetwork:
Architectureandmechanism.InProceedingsofACMSIGCOMM’92,pages14–26,Baltimore,Maryland,August1992.
7.R.Cruz.Acalculusfornetworkdelay,partsIandII.IEEETransactionsonInformationTheory,37(1):114–
141,January1991.
8.R.Cruz.Qualityofserviceguaranteesinvirtualcircuitswitchednetworks.IEEEJournalonSelectedAreas
inCommunications,13(6):1048–1056,August1995.
9.C.DovrolisandP.Ramanathan.Acaseforrelativedifferentiatedservicesandtheproportionaldifferentiation
model.IEEENetwork,13(5):26–35,September1999.
10.N.FigueiraandJ.Pasquale.Anupperboundondelayforthevirtualclockservicediscipline.IEEE/ACM
TransactionsonNetworking,3(4):399–408,August1995.
11.V.Firoiu,J.Kurose,andD.Towsley.EfficientadmissioncontrolforEDFschedulers.InProceedingsofIEEE
INFOCOM’97,pages310–317,Kobe,Japan,April1997.
12.S.FloydandV.Jacobson.Link-sharingandresourcemanagementmodelsforpacketnetwork.IEEE/ACM
TransactionsonNetworking,3(4):365–386,August1995.13.L.Georgiadis,R.Gu´erin,andA.Parekh.Optimalmultiplexingonasinglelink:Delayandbufferrequire-ments.IEEE/ACMTransactionsonInformationTheory,43(5),1997.14.L.Georgiadis,R.Gu´erin,V.Peris,andK.Sivarajan.EfficientnetworkQoSprovisioningbasedonpernode
trafficshaping.IEEE/ACMTransactionsonNetworking,4(4):482–501,August1996.
15.C.LiandE.Knightly.Coordinatednetworkscheduling:Aframeworkforend-to-endservices.InProceedings
ofIEEEICNP’00,Osaka,Japan,November2000.
16.C.LiandE.Knightly.Schedulabilitycriterionandperformanceanalysisofcoordinatedschedulers,2001.
TechnicalReport(http://www.ece.rice.edu/networks/publications.html).
17.J.Liebeherr,D.Wrege,andD.Ferrari.Exactadmissioncontrolfornetworkswithboundeddelayservices.
IEEE/ACMTransactionsonNetworking,4(6):885–901,December1996.
18.T.Nandagopal,N.Venkitaraman,R.Sivakumar,andV.Bharghavan.Relativedelaydifferentationanddelay
classadaptationincore-statelessnetworks.InProceedingsofIEEEINFOCOM2000,TelAviv,Israel,March2000.
19.A.ParekhandR.Gallager.Ageneralizedprocessorsharingapproachtoflowcontrolinintegratedservices
networks:thesingle-nodecase.IEEE/ACMTransactionsonNetworking,1(3):344–357,June1993.
20.A.ParekhandR.Gallager.Ageneralizedprocessorsharingapproachtoflowcontrolinintegratedservices
networks:themultiplenodecase.IEEE/ACMTransactionsonNetworking,2(2):137–150,April1994.
21.H.Sariowan,R.Cruz,andG.Polyzos.SCED:ageneralizedschedulingpolicyforguaranteeingquality-of-service.IEEE/ACMTransactionsonNetworking,7(5):669–684,October1999.
22.I.Stoica,S.Shenker,andH.Zhang.Core-StatelessFairQueueing:Ascalablearchitecturetoapproximatefair
bandwidthallocationsinhighspeednetworks.InProceedingsofACMSIGCOMM’98,Vancouver,BritishColumbia,September1998.
23.I.StoicaandH.Zhang.Providingguaranteedserviceswithoutperflowmanagement.InProceedingsofACM
SIGCOMM’99,Cambridge,MA,August1999.
24.L.TassiulasandL.Georgiadis.Anywork-concervingpolicystabilizestheringwithspatialre-use.IEEE/ACM
TransactionsonNetworking,4(2):205–208,April1996.
25.H.ZhangandD.Ferrari.Rate-controlledservicedisciplines.JournalofHighSpeedNetworks,3(4):3–412,
1994.
26.L.Zhang.Virtualclock:Anewtrafficcontrolalgorithmforpacketswitchingnetworks.InProceedingsof
ACMSIGCOMM’90,pages19–29,Philadelphia,PA,September1990.
27.Z.Zhang,Z.Duan,andY.Hou.Virtualtimereferencesystem:Aunifyingschedulingframeworkforscalable
supportofguaranteedservices.IEEEJournalonSelectedAreasinCommunications,18(12):2684–2695,December2000.
28.K.Zhu,Y.Zhuang,andY.Viniotis.Achievingend-to-enddelayboundsbyEDFschedulingwithouttraffic
shaping.InProceedingsofIEEEINFOCOM’01,Anchorage,Alaska,April2001.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- kqyc.cn 版权所有 赣ICP备2024042808号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务